Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 144: 112362, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34710838

RESUMEN

Isoniazid (INH) is one of the two most effective first-line antitubercular drugs and is still used at the present time as a scaffold for developing new compounds to fight TB. In a previous study, we have observed that an INH derivative, an hydrazide N'-substituted with a C10acyl chain, was able to counterbalance its smaller reactivity with a higher membrane permeability. This resulted in an improved performance against the most prevalent Mycobacterium tuberculosis (Mtb) resistant strain (S315T), compared to INH. In this work, we have designed two new series of INH derivatives (alkyl hydrazides and hydrazones) with promising in silico properties, namely membrane permeabilities and spontaneous IN* radical formation. The kinetics, cytotoxicity, and biological activity evaluations confirmed the in silico predictions regarding the very high reactivity of the alkyl hydrazides. The hydrazones, on the other hand, showed very similar behavior compared to INH, particularly in biological tests that take longer to complete, indicating that these compounds are being hydrolyzed back to INH. Despite their improved membrane permeabilities, the reactivities of these two series are too high, impairing their overall performance. Nevertheless, the systematic data gathered about these compounds have showed us the need to find a balance between lipophilicity and reactivity, which is paramount to devise better INH-based derivatives aimed at circumventing Mtb resistance.


Asunto(s)
Antituberculosos/farmacología , Membrana Celular/metabolismo , Diseño de Fármacos , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/síntesis química , Antituberculosos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Catalasa/genética , Catalasa/metabolismo , Hidrólisis , Isoniazida/análogos & derivados , Isoniazida/síntesis química , Isoniazida/metabolismo , Cinética , Estructura Molecular , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Permeabilidad , Relación Estructura-Actividad
2.
J Biol Chem ; 292(45): 18408-18421, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28972181

RESUMEN

KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Modelos Moleculares , Peroxidasa/metabolismo , Algoritmos , Sustitución de Aminoácidos , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Benzotiazoles/farmacología , Biocatálisis/efectos de los fármacos , Catalasa/química , Catalasa/genética , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Sulfónicos/farmacología , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...